حل عددی معادلات دیفرانسیل پاره ای تصادفی بیضوی و سهموی با استفاده از روش هم مکانی بر پایه توابع پایه ای شعاعی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی
- نویسنده وحید فرهنگی
- استاد راهنما علی فروش باستانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
در این پایان نامه ابتدا به اهمیت عدم قطعیت در معادلات ذیفانسیل می پردازیم. سپس اشکال مختلفی که یک معادله دیفرانسیل می تواند شامل عدم قطعیت باشد را بیان می کنیم. کاربردهای توابع پایه ای شعاعی در درونیابی داده های پراکنده در چند بعد و حل معادلات دیفرانسیل معمولی و پاره ای موضوع بعدی این پایان نامه است. چهار روش از جمله روش جواب های اساسی را برای حل معادلات دیفرانسیل ارائه داده و در نهایت از روش توابع پایه ای پعاعی برای حل معادلات دیفرانسیل پاره ای تصادفی استفاده می کنیم. همچنین نحوه بدست آودن میانگین جواب و واریانس را با این روش توضیح می دهیم. چند مثال برای دو دسته از مسائل تصادفی یعنی مسایل مستقل از زمان و مسائل وابسته به زمان را با چها روش گفته شده حل کرده و برای هر مورد متوسط خطا و واریانس نرمال شده را پیدا میکنیم
منابع مشابه
بررسی روش هم محلی توابع پایه ای شعاعی برای حل معادلات دیفرانسیل جزئی سهموی غیر موضعی
بررسی روش هم محلی توابع پایه ای شعاعی برای حل معادلات دیفرانسیل جزئی سهموی غیر موضعی
15 صفحه اولساختن روشهای تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه
In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...
متن کاملحل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
متن کاملحل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی با استفاده از توابع پایه شعاعی
در این پایان نامه به معرفی توابع پایه شعاعی پرداخته ایم در نهایت حل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی به کمک تابع پایه شعاعی مولتی کوادریک به روشهای مستقیم و غیر مستقیم را مورد بررسی قرار داده ایم.
روش توابع پایه ای شعاعی برای حل معادلات دیفرانسیل تاخیری
در این پایان نامه، روش توابع پایه ای شعاعی برای حل معادلات دیفرانسیل تاخیری یا تفاضلی تعمیم داده شده است. روش مذکور بر روی مثال های متعدد مورد آزمایش قرار گرفته و نتایج نشان می دهد که روش پیشنهاد شده کارآمد و ساده می باشد. هم چنین روش هم مکانی تیلور را معرفی می کنیم و به مقایسه روش توابع پایه ای شعاعی با روش موجود می پردازیم. واژه های کلیدی: روش توابع پایه ای شعاعی، معادله ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023